Source code for dicom2nifti.common

# -*- coding: utf-8 -*-
"""
dicom2nifti

@author: abrys
"""
import dicom2nifti.compressed_dicom as compressed_dicom

import os
import struct

from pydicom.tag import Tag

import logging
import numpy

from dicom2nifti.exceptions import ConversionValidationError, ConversionError
import dicom2nifti.settings

logger = logging.getLogger(__name__)


# Disable false positive numpy errors
# pylint: disable=E1101
[docs]def read_dicom_directory(dicom_directory, stop_before_pixels=False): """ Read all dicom files in a given directory (stop before pixels) :type stop_before_pixels: bool :type dicom_directory: str :param stop_before_pixels: Should we stop reading before the pixeldata (handy if we only want header info) :param dicom_directory: Directory with dicom data :return: List of dicom objects """ dicom_input = [] for root, _, files in os.walk(dicom_directory): for dicom_file in files: file_path = os.path.join(root, dicom_file) if compressed_dicom.is_dicom_file(file_path): dicom_headers = compressed_dicom.read_file(file_path, defer_size="1 KB", stop_before_pixels=stop_before_pixels, force=dicom2nifti.settings.pydicom_read_force) if is_valid_imaging_dicom(dicom_headers): dicom_input.append(dicom_headers) return dicom_input
[docs]def is_hitachi(dicom_input): """ Use this function to detect if a dicom series is a hitachi dataset :param dicom_input: directory with dicom files for 1 scan of a dicom_header """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is hitachi if 'HITACHI' not in header.Manufacturer.upper(): return False return True
[docs]def is_ge(dicom_input): """ Use this function to detect if a dicom series is a GE dataset :param dicom_input: list with dicom objects """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is GE if 'GE MEDICAL SYSTEMS' not in header.Manufacturer.upper(): return False return True
[docs]def is_philips(dicom_input): """ Use this function to detect if a dicom series is a philips dataset :param dicom_input: directory with dicom files for 1 scan of a dicom_header """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is Philips if 'PHILIPS' not in header.Manufacturer.upper(): return False return True
[docs]def is_siemens(dicom_input): """ Use this function to detect if a dicom series is a siemens dataset :param dicom_input: directory with dicom files for 1 scan """ # read dicom header header = dicom_input[0] # check if manufacturer is Siemens if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False if 'SIEMENS' not in header.Manufacturer.upper(): return False return True
[docs]def is_multiframe_dicom(dicom_input): """ Use this function to detect if a dicom series is a siemens 4D dataset NOTE: Only the first slice will be checked so you can only provide an already sorted dicom directory (containing one series) :param dicom_input: directory with dicom files for 1 scan """ # read dicom header header = dicom_input[0] if Tag(0x0002, 0x0002) not in header.file_meta: return False if header.file_meta[0x0002, 0x0002].value == '1.2.840.10008.5.1.4.1.1.4.1': return True return False
[docs]def is_valid_imaging_dicom(dicom_header): """ Function will do some basic checks to see if this is a valid imaging dicom """ # if it is philips and multiframe dicom then we assume it is ok try: if is_philips([dicom_header]) or is_siemens([dicom_header]): if is_multiframe_dicom([dicom_header]): return True if "SeriesInstanceUID" not in dicom_header: return False if "InstanceNumber" not in dicom_header: return False if "ImageOrientationPatient" not in dicom_header or len(dicom_header.ImageOrientationPatient) < 6: return False if "ImagePositionPatient" not in dicom_header or len(dicom_header.ImagePositionPatient) < 3: return False # for all others if there is image position patient we assume it is ok if Tag(0x0020, 0x0037) not in dicom_header: return False return True except (KeyError, AttributeError): return False
[docs]def multiframe_get_volume_pixeldata(dicoms): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type sorted_slices: list of slices :param sorted_slices: sliced sored in the correct order to create volume """ # create the new volume with with the correct data vol = _get_slice_pixeldata(dicoms[0]) # Done # if rgb data do separate transpose if len(vol.shape) == 4 and vol.shape[3] == 3: vol = numpy.transpose(vol, (2, 1, 0, 3)) else: vol = numpy.transpose(vol, (2, 1, 0)) return vol
[docs]def get_volume_pixeldata(sorted_slices): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type sorted_slices: list of slices :param sorted_slices: sliced sored in the correct order to create volume """ slices = [] combined_dtype = None for slice_ in sorted_slices: slice_data = _get_slice_pixeldata(slice_) slice_data = slice_data[numpy.newaxis, :, :] slices.append(slice_data) if combined_dtype is None: combined_dtype = slice_data.dtype else: combined_dtype = numpy.promote_types(combined_dtype, slice_data.dtype) # create the new volume with with the correct data vol = numpy.concatenate(slices, axis=0) # Done # if rgb data do separate transpose if len(vol.shape) == 4 and vol.shape[3] == 3: vol = numpy.transpose(vol, (2, 1, 0, 3)) else: vol = numpy.transpose(vol, (2, 1, 0)) return vol
def _get_slice_pixeldata(dicom_slice): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type dicom_slice: pydicom object :param dicom_slice: slice to get the pixeldata for """ data = dicom_slice.pixel_array # fix overflow issues for signed data where BitsStored is lower than BitsAllocated and PixelReprentation = 1 (signed) # for example a hitachi mri scan can have BitsAllocated 16 but BitsStored is 12 and HighBit 11 if dicom_slice.BitsAllocated != dicom_slice.BitsStored and \ dicom_slice.HighBit == dicom_slice.BitsStored - 1 and \ dicom_slice.PixelRepresentation == 1: if dicom_slice.BitsAllocated == 16: data = data.astype(numpy.int16) # assert that it is a signed type max_value = pow(2, dicom_slice.HighBit) - 1 invert_value = -1 ^ max_value data[data > max_value] = numpy.bitwise_or(data[data > max_value], invert_value) pass return apply_scaling(data, dicom_slice) def _is_float(float_value): """ Check if a number is actually a float :type float_value: int or float :param float_value: number to check :return True if it is not an integer number """ if int(float_value) != float_value: return True
[docs]def get_numpy_type(dicom_header): """ Make NumPy format code, e.g. "uint16", "int32" etc from two pieces of info: mosaic.PixelRepresentation -- 0 for unsigned, 1 for signed; mosaic.BitsAllocated -- 8, 16, or 32 :param dicom_header: the read dicom file/headers :returns: numpy format string """ format_string = '%sint%d' % (('u', '')[dicom_header.PixelRepresentation], dicom_header.BitsAllocated) try: numpy.dtype(format_string) except TypeError: raise TypeError("Data type not understood by NumPy: format='%s', PixelRepresentation=%d, BitsAllocated=%d" % (format_string, dicom_header.PixelRepresentation, dicom_header.BitsAllocated)) return format_string
[docs]def get_fd_array_value(tag, count): """ Getters for data that also work with implicit transfersyntax :param count: number of items in the array :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': values = [] for i in range(count): start = i * 8 stop = (i + 1) * 8 values.append(struct.unpack('d', tag.value[start:stop])[0]) return numpy.array(values) return tag.value
[docs]def get_fd_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('d', tag.value)[0] return value return tag.value
[docs]def set_fd_value(tag, value): """ Setters for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('d', value) tag.value = value
[docs]def get_fl_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('f', tag.value)[0] return value return tag.value
[docs]def get_is_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ # data is int formatted as string so convert te string first and cast to int if tag.VR == 'OB' or tag.VR == 'UN': value = int(tag.value.decode("ascii").replace(" ", "")) return value return int(tag.value)
[docs]def get_ss_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ # data is int formatted as string so convert te string first and cast to int if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('h', tag.value)[0] return value return tag.value
[docs]def set_ss_value(tag, value): """ Setter for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('h', value) tag.value = value
[docs]def apply_scaling(data, dicom_headers): """ Rescale the data based on the RescaleSlope and RescaleOffset Based on the scaling from pydicomseries :param dicom_headers: dicom headers to use to retreive the scaling factors :param data: the input data """ # Apply the rescaling if needed private_scale_slope_tag = Tag(0x2005, 0x100E) private_scale_intercept_tag = Tag(0x2005, 0x100D) if 'RescaleSlope' in dicom_headers or 'RescaleIntercept' in dicom_headers \ or private_scale_slope_tag in dicom_headers or private_scale_intercept_tag in dicom_headers: rescale_slope = 1 rescale_intercept = 0 if 'RescaleSlope' in dicom_headers: rescale_slope = dicom_headers.RescaleSlope if 'RescaleIntercept' in dicom_headers: rescale_intercept = dicom_headers.RescaleIntercept # try: # # this section can sometimes fail due to unknown private fields # if private_scale_slope_tag in dicom_headers: # private_scale_slope = float(dicom_headers[private_scale_slope_tag].value) # if private_scale_slope_tag in dicom_headers: # private_scale_slope = float(dicom_headers[private_scale_slope_tag].value) # except: # pass return do_scaling(data, rescale_slope, rescale_intercept) else: return data
[docs]def do_scaling(data, rescale_slope, rescale_intercept, private_scale_slope=1.0, private_scale_intercept=0.0): # Obtain slope and offset need_floats = False if int(rescale_slope) != rescale_slope or \ int(rescale_intercept) != rescale_intercept or \ private_scale_slope != 1.0 or \ private_scale_intercept != 0.0: need_floats = True if not need_floats: rescale_slope = int(rescale_slope) rescale_intercept = int(rescale_intercept) else: rescale_slope = float(rescale_slope) rescale_intercept = float(rescale_intercept) private_scale_slope = float(private_scale_slope) private_scale_intercept = float(private_scale_intercept) # Maybe we need to change the datatype? if data.dtype in [numpy.float32, numpy.float64]: pass elif need_floats: data = data.astype(numpy.float32) else: # Determine required range minimum_required, maximum_required = data.min(), data.max() minimum_required = min([minimum_required, minimum_required * rescale_slope + rescale_intercept, maximum_required * rescale_slope + rescale_intercept]) maximum_required = max([maximum_required, minimum_required * rescale_slope + rescale_intercept, maximum_required * rescale_slope + rescale_intercept]) # Determine required datatype from that if minimum_required < 0: # Signed integer type maximum_required = max([-minimum_required, maximum_required]) if maximum_required < 2 ** 7: dtype = numpy.int8 elif maximum_required < 2 ** 15: dtype = numpy.int16 elif maximum_required < 2 ** 31: dtype = numpy.int32 else: dtype = numpy.float32 else: # Unsigned integer type if maximum_required < 2 ** 8: dtype = numpy.uint8 elif maximum_required < 2 ** 16: dtype = numpy.uint16 elif maximum_required < 2 ** 32: dtype = numpy.uint32 else: dtype = numpy.float32 # Change datatype if dtype != data.dtype: data = data.astype(dtype) # Apply rescale_slope and rescale_intercept # Scaling according to ISMRM2013_PPM_scaling_reminder # The actual scaling is not does the scaling the same way as the next code example # and https://github.com/fedorov/DICOMPhilipsRescalePlugin/blob/master/DICOMPhilipsRescalePlugin.py # FOR DEFAULT DATA # RESULT_DATA = (STORED_VALUE * RESCALE_SLOPE) + RESCALE_INTERCEPT # FOR PHILIPS DATA # RESULT_DATA = (STORED_VALUE * PRIVATE_SCALE_SLOPE) + PRIVATE_SCALE_INTERCEPT if private_scale_slope == 1.0 and private_scale_intercept == 0.0: data = (data * rescale_slope) + rescale_intercept else: data = (data * private_scale_slope) + private_scale_intercept return data
[docs]def write_bvec_file(bvecs, bvec_file): """ Write an array of bvecs to a bvec file :param bvecs: array with the vectors :param bvec_file: filepath to write to """ if bvec_file is None: return logger.info('Saving BVEC file: %s' % bvec_file) with open(bvec_file, 'w') as text_file: # Map a dicection to string join them using a space and write to the file text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 0]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 1]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 2])))
[docs]def write_bval_file(bvals, bval_file): """ Write an array of bvals to a bval file :param bvals: array with the values :param bval_file: filepath to write to """ if bval_file is None: return logger.info('Saving BVAL file: %s' % bval_file) with open(bval_file, 'w') as text_file: # join the bvals using a space and write to the file text_file.write('%s\n' % ' '.join(map(str, bvals)))
[docs]def multiframe_create_affine(dicoms): """ Function to generate the affine matrix for a dicom series This method was based on (http://nipy.org/nibabel/dicom/dicom_orientation.html) :param sorted_dicoms: list with sorted dicom files """ # Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine) frame_info = dicoms[0].PerFrameFunctionalGroupsSequence image_orient1 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[0:3] image_orient2 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[3:6] first_image_pos = numpy.array(frame_info[0].PlanePositionSequence[0].ImagePositionPatient) delta_r = float(frame_info[0].PixelMeasuresSequence[0].PixelSpacing[0]) delta_c = float(frame_info[0].PixelMeasuresSequence[0].PixelSpacing[1]) image_pos = numpy.array(frame_info[0].PlanePositionSequence[0].ImagePositionPatient) last_image_pos = numpy.array(frame_info[-1].PlanePositionSequence[0].ImagePositionPatient) if len(frame_info) == 1: # Single slice slice_thickness = 1 if "SliceThickness" in frame_info[0].PixelMeasuresSequence[0]: slice_thickness = frame_info[0].PixelMeasuresSequence[0].SliceThickness step = - numpy.cross(image_orient1, image_orient2) * slice_thickness else: step = (image_pos - last_image_pos) / (1 - len(frame_info)) # check if this is actually a volume and not all slices on the same location if numpy.linalg.norm(step) == 0.0: raise ConversionError("NOT_A_VOLUME") affine = numpy.array( [[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -step[0], -image_pos[0]], [-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -step[1], -image_pos[1]], [image_orient1[2] * delta_c, image_orient2[2] * delta_r, step[2], image_pos[2]], [0, 0, 0, 1]] ) return affine, numpy.linalg.norm(step)
[docs]def create_affine(sorted_dicoms): """ Function to generate the affine matrix for a dicom series This method was based on (http://nipy.org/nibabel/dicom/dicom_orientation.html) :param sorted_dicoms: list with sorted dicom files """ # Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine) image_orient1 = numpy.array(sorted_dicoms[0].ImageOrientationPatient)[0:3] image_orient2 = numpy.array(sorted_dicoms[0].ImageOrientationPatient)[3:6] delta_r = float(sorted_dicoms[0].PixelSpacing[0]) delta_c = float(sorted_dicoms[0].PixelSpacing[1]) image_pos = numpy.array(sorted_dicoms[0].ImagePositionPatient) last_image_pos = numpy.array(sorted_dicoms[-1].ImagePositionPatient) if len(sorted_dicoms) == 1: # Single slice slice_thickness = 1 if "SliceThickness" in sorted_dicoms[0]: slice_thickness = sorted_dicoms[0].SliceThickness step = - numpy.cross(image_orient1, image_orient2) * slice_thickness else: step = (image_pos - last_image_pos) / (1 - len(sorted_dicoms)) # check if this is actually a volume and not all slices on the same location if numpy.linalg.norm(step) == 0.0: raise ConversionError("NOT_A_VOLUME") affine = numpy.array( [[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -step[0], -image_pos[0]], [-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -step[1], -image_pos[1]], [image_orient1[2] * delta_c, image_orient2[2] * delta_r, step[2], image_pos[2]], [0, 0, 0, 1]] ) return affine, numpy.linalg.norm(step)
[docs]def multiframe_validate_orthogonal(dicoms): """ Validate that volume is orthonormal :param dicoms: check that we have a volume without skewing """ # if only one slice we do not need this check if not multiframe_is_orthogonal(dicoms, log_details=True): raise ConversionValidationError('NON_CUBICAL_IMAGE/GANTRY_TILT')
[docs]def validate_orthogonal(dicoms): """ Validate that volume is orthonormal :param dicoms: check that we have a volume without skewing """ # if only one slice we do not need this check if len(dicoms) == 1: return if not is_orthogonal(dicoms, log_details=True): raise ConversionValidationError('NON_CUBICAL_IMAGE/GANTRY_TILT')
[docs]def multiframe_is_orthogonal(dicoms, log_details=False): """ Validate that volume is orthonormal :param dicoms: check that we have a volume without skewing """ frame_info = dicoms[0].PerFrameFunctionalGroupsSequence first_image_orient1 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[0:3] first_image_orient2 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[3:6] first_image_pos = numpy.array(frame_info[0].PlanePositionSequence[0].ImagePositionPatient) last_image_pos = numpy.array(frame_info[-1].PlanePositionSequence[0].ImagePositionPatient) first_image_dir = numpy.cross(first_image_orient1, first_image_orient2) first_image_dir /= numpy.linalg.norm(first_image_dir) combined_dir = last_image_pos - first_image_pos combined_dir /= numpy.linalg.norm(combined_dir) if not numpy.allclose(first_image_dir, combined_dir, rtol=0.05, atol=0.05) \ and not numpy.allclose(first_image_dir, -combined_dir, rtol=0.05, atol=0.05): if log_details: logger.warning('Orthogonality check failed: non cubical image') logger.warning('---------------------------------------------------------') logger.warning(first_image_dir) logger.warning(combined_dir) logger.warning('---------------------------------------------------------') return False return True
[docs]def is_orthogonal(dicoms, log_details=False): """ Validate that volume is orthonormal :param dicoms: check that we have a volume without skewing """ first_image_orient1 = numpy.array(dicoms[0].ImageOrientationPatient)[0:3] first_image_orient2 = numpy.array(dicoms[0].ImageOrientationPatient)[3:6] first_image_pos = numpy.array(dicoms[0].ImagePositionPatient) last_image_pos = numpy.array(dicoms[-1].ImagePositionPatient) first_image_dir = numpy.cross(first_image_orient1, first_image_orient2) first_image_dir /= numpy.linalg.norm(first_image_dir) combined_dir = last_image_pos - first_image_pos combined_dir /= numpy.linalg.norm(combined_dir) if not numpy.allclose(first_image_dir, combined_dir, rtol=0.05, atol=0.05) \ and not numpy.allclose(first_image_dir, -combined_dir, rtol=0.05, atol=0.05): if log_details: logger.warning('Orthogonality check failed: non cubical image') logger.warning('---------------------------------------------------------') logger.warning(first_image_dir) logger.warning(combined_dir) logger.warning('---------------------------------------------------------') return False return True
[docs]def is_orthogonal_nifti(nifti_image): """ Validate that volume is orthonormal :param dicoms: check that we have a volume without skewing """ affine = nifti_image.affine transformed_x = numpy.transpose(numpy.dot(affine, [[1], [0], [0], [0]]))[0][:3] transformed_y = numpy.transpose(numpy.dot(affine, [[0], [1], [0], [0]]))[0][:3] transformed_z = numpy.transpose(numpy.dot(affine, [[0], [0], [1], [0]]))[0][:3] transformed_x /= numpy.linalg.norm(transformed_x) transformed_y /= numpy.linalg.norm(transformed_y) transformed_z /= numpy.linalg.norm(transformed_z) perpendicular = numpy.cross(transformed_x, transformed_y) perpendicular /= numpy.linalg.norm(perpendicular) if not numpy.allclose(transformed_z, perpendicular, rtol=0.05, atol=0.05) \ and not numpy.allclose(transformed_z, -perpendicular, rtol=0.05, atol=0.05): return False return True
[docs]def sort_dicoms(dicoms): """ Sort the dicoms based om the image possition patient :param dicoms: list of dicoms """ # find most significant axis to use during sorting # the original way of sorting (first x than y than z) does not work in certain border situations # where for exampe the X will only slightly change causing the values to remain equal on multiple slices # messing up the sorting completely) dicom_input_sorted_x = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[0])) dicom_input_sorted_y = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[1])) dicom_input_sorted_z = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[2])) diff_x = abs(dicom_input_sorted_x[-1].ImagePositionPatient[0] - dicom_input_sorted_x[0].ImagePositionPatient[0]) diff_y = abs(dicom_input_sorted_y[-1].ImagePositionPatient[1] - dicom_input_sorted_y[0].ImagePositionPatient[1]) diff_z = abs(dicom_input_sorted_z[-1].ImagePositionPatient[2] - dicom_input_sorted_z[0].ImagePositionPatient[2]) if diff_x >= diff_y and diff_x >= diff_z: return dicom_input_sorted_x if diff_y >= diff_x and diff_y >= diff_z: return dicom_input_sorted_y if diff_z >= diff_x and diff_z >= diff_y: return dicom_input_sorted_z
[docs]def multiframe_validate_slice_increment(dicoms): """ Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms """ frame_info = dicoms[0].PerFrameFunctionalGroupsSequence first_image_position = numpy.array(frame_info[0].PlanePositionSequence[0].ImagePositionPatient) previous_image_position = numpy.array(frame_info[1].PlanePositionSequence[0].ImagePositionPatient) increment = first_image_position - previous_image_position for frame_ in frame_info[2:]: current_image_position = numpy.array(frame_.PlanePositionSequence[0].ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): logger.warning('Slice increment not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (previous_image_position, increment)) logger.warning('%s %s' % (current_image_position, current_increment)) logger.warning('---------------------------------------------------------') raise ConversionValidationError('SLICE_INCREMENT_INCONSISTENT') previous_image_position = current_image_position
[docs]def validate_slice_increment(dicoms): """ Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms """ # if only one slice we do not need to run the checks if len(dicoms) == 1: return first_image_position = numpy.array(dicoms[0].ImagePositionPatient) previous_image_position = numpy.array(dicoms[1].ImagePositionPatient) increment = first_image_position - previous_image_position for dicom_ in dicoms[2:]: current_image_position = numpy.array(dicom_.ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): logger.warning('Slice increment not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (previous_image_position, increment)) logger.warning('%s %s' % (current_image_position, current_increment)) if 'InstanceNumber' in dicom_: logger.warning('Instance Number: %s' % dicom_.InstanceNumber) logger.warning('---------------------------------------------------------') raise ConversionValidationError('SLICE_INCREMENT_INCONSISTENT') previous_image_position = current_image_position
[docs]def validate_instance_number(dicoms): """ Validate that the instance number is consistent through all slices :param dicoms: list of dicoms """ if "InstanceNumber" not in dicoms[0]: return first_instance_number = numpy.array(dicoms[0].InstanceNumber) previous_instance_number = numpy.array(dicoms[1].InstanceNumber) instance_number_increment = first_instance_number - previous_instance_number for dicom_ in dicoms[2:]: current_instance_number = numpy.array(dicom_.InstanceNumber) current_instance_number_increment = previous_instance_number - current_instance_number if not instance_number_increment == current_instance_number_increment: logger.warning('Instance Number not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (previous_instance_number, current_instance_number)) logger.warning('---------------------------------------------------------') raise ConversionValidationError('INSTANCE_NUMBER_INCONSISTENT') previous_instance_number = current_instance_number
[docs]def multiframe_is_slice_increment_inconsistent(dicoms): """ Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms """ sliceincrement_inconsistent = False frame_info = dicoms[0].PerFrameFunctionalGroupsSequence first_image_position = numpy.array(frame_info[0].PlanePositionSequence[0].ImagePositionPatient) previous_image_position = numpy.array(frame_info[1].PlanePositionSequence[0].ImagePositionPatient) increment = first_image_position - previous_image_position for frame_ in frame_info[2:]: current_image_position = numpy.array(frame_.PlanePositionSequence[0].ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): sliceincrement_inconsistent = True break previous_image_position = current_image_position return sliceincrement_inconsistent
[docs]def is_slice_increment_inconsistent(dicoms): """ Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms """ if len(dicoms) == 1: return True sliceincrement_inconsistent = False first_image_position = numpy.array(dicoms[0].ImagePositionPatient) previous_image_position = numpy.array(dicoms[1].ImagePositionPatient) increment = first_image_position - previous_image_position for dicom_ in dicoms[2:]: current_image_position = numpy.array(dicom_.ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): sliceincrement_inconsistent = True break previous_image_position = current_image_position return sliceincrement_inconsistent
[docs]def multiframe_validate_slicecount(dicoms): """ Validate that volume is big enough to create a meaningfull volume This will also skip localizers and alike :param dicoms: list of dicoms """ frame_info = dicoms[0].PerFrameFunctionalGroupsSequence if len(frame_info) <= 3: logger.warning('At least 3 slices are needed for correct conversion') logger.warning('---------------------------------------------------------') raise ConversionValidationError('TOO_FEW_SLICES/LOCALIZER')
[docs]def validate_slicecount(dicoms): """ Validate that volume is big enough to create a meaningfull volume This will also skip localizers and alike :param dicoms: list of dicoms """ if len(dicoms) <= 3: logger.warning('At least 3 slices are needed for correct conversion') logger.warning('---------------------------------------------------------') raise ConversionValidationError('TOO_FEW_SLICES/LOCALIZER')
[docs]def multiframe_validate_orientation(dicoms): """ Validate that all dicoms have the same orientation :param dicoms: list of dicoms """ frame_info = dicoms[0].PerFrameFunctionalGroupsSequence first_image_orient1 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[0:3] first_image_orient2 = numpy.array(frame_info[0].PlaneOrientationSequence[0].ImageOrientationPatient)[3:6] for frame_ in frame_info: # Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine) image_orient1 = numpy.array(frame_.PlaneOrientationSequence[0].ImageOrientationPatient)[0:3] image_orient2 = numpy.array(frame_.PlaneOrientationSequence[0].ImageOrientationPatient)[3:6] if not numpy.allclose(image_orient1, first_image_orient1, rtol=0.001, atol=0.001) \ or not numpy.allclose(image_orient2, first_image_orient2, rtol=0.001, atol=0.001): logger.warning('Image orientations not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (image_orient1, first_image_orient1)) logger.warning('%s %s' % (image_orient2, first_image_orient2)) logger.warning('---------------------------------------------------------') raise ConversionValidationError('IMAGE_ORIENTATION_INCONSISTENT')
[docs]def validate_orientation(dicoms): """ Validate that all dicoms have the same orientation :param dicoms: list of dicoms """ first_image_orient1 = numpy.array(dicoms[0].ImageOrientationPatient)[0:3] first_image_orient2 = numpy.array(dicoms[0].ImageOrientationPatient)[3:6] for dicom_ in dicoms: # Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine) image_orient1 = numpy.array(dicom_.ImageOrientationPatient)[0:3] image_orient2 = numpy.array(dicom_.ImageOrientationPatient)[3:6] if not numpy.allclose(image_orient1, first_image_orient1, rtol=0.001, atol=0.001) \ or not numpy.allclose(image_orient2, first_image_orient2, rtol=0.001, atol=0.001): logger.warning('Image orientations not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (image_orient1, first_image_orient1)) logger.warning('%s %s' % (image_orient2, first_image_orient2)) logger.warning('---------------------------------------------------------') raise ConversionValidationError('IMAGE_ORIENTATION_INCONSISTENT')
[docs]def set_tr_te(nifti_image, repetition_time, echo_time): """ Set the tr and te in the nifti headers :param echo_time: echo time :param repetition_time: repetition time :param nifti_image: nifti image to set the info to """ # set the repetition time in pixdim nifti_image.header.structarr['pixdim'][4] = repetition_time / 1000.0 # set tr and te in db_name field nifti_image.header.structarr['db_name'] = '?TR:%.3f TE:%d' % (repetition_time, echo_time) return nifti_image
[docs]def get_nifti_data(nifti_image): """ Function that replicates the deprecated nifti.get_data behavior """ return numpy.asanyarray(nifti_image.dataobj)